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Introduction 

Vision and space are prominent modalities in our 
experiences as humans. We live in a richly visual world, 
and are constantly and acutely aware of our position in 
space and our surroundings. In contrast to this seemingly 
precise awareness, we are also able to reason abstractly, 
use language, and construct arbitrary hypothetical 
scenarios. 
 In this position paper, we present an AI system we are 
building to work towards human capability in visuospatial 
processing. We use mental imagery processing as our 
psychological basis and integrate it with symbolic 
processing. To design this system, we are considering 
constraints from the natural world (as described by 
psychology and neuroscience), and those uncovered by AI 
research. In doing so, we hope to address the gap between 
abstract reasoning and detailed perception. 

Constraints from AI and Psychology 
Historically, one of the most prominent approaches to AI 
has been symbol processing. While purely symbolic AI has 
its weaknesses, it has some very important strengths. 
Symbols allow for very general reasoning and can be 
composed together to create arbitrary hypothetical 
situations (Newell, 1990). Humans also exhibit the ability 
to create arbitrary situations and since symbols are a good 
AI answer for this capability, we take this as a constraint 
on our system: it must use symbolic reasoning. 
Specifically, we are pursuing our research in the context of 
the Soar cognitive architecture (Laird, 2008), which 
includes symbolic processing. 
 Symbolic AI systems typically use qualitative reasoning, 
where a higher-level representation of the continuous 
world is reasoned over, rather than precise information as 
might be provided by the senses. Much work in AI has 
focused on finding appropriate qualitative representations 
of space, but this work has lead to the poverty conjecture 
of Forbus et al. (1991), that “there is no purely qualitative, 
general-purpose representation of spatial properties”. If 
this is true, it places another constraint on our system: it 
must employ a non-qualitative representation of space. 
 Looking to psychology, a relevant area of study is 
mental imagery (Kosslyn, 2006). We have been 

investigating two forms of imagery, spatial and visual. In 
both forms it appears the brain activates its perception 
system from the top down, imagining objects in the same 
systems that we normally associate with perception. 
Humans seem to have specialized systems to handle spatial 
and visual information, and imagery brings these systems 
under the umbrella of cognition, since they are used for 
more than simply translating sensory information into 
higher-level representations. This is another constraint in 
our system: it must model human spatial and visual 
imagery by including representations and specialized forms 
of processing associated with these forms of imagery. 

The SVS Spatial / Visual System 
Soar+SVI (Soar Spatial and Visual Imagery; Lathrop and 
Laird, 2007; Lathrop, 2008) is a system created to study 
spatial and  visual imagery with Soar, and SRS (Spatial 
Reasoning for Soar; Wintermute and Laird, 2007, 2008) is 
a system created to explore problem solving with a spatial 
representation, focusing on the translation between the 
spatial and symbolic layers. These systems are being 
combined and improved in a new system, Spatial and 
Visual System or SVS (Figure 1), an extension to Soar. 
 There are two short-term and one long-term memory in 
SVS. The two STMs are for visual information (roughly 
corresponding to the visual cortex), and spatial information 
(roughly corresponding to a region in the parietal cortex). 
The Visual Buffer is retinotopically mapped, and two-
dimensional. It represents strictly visual information, such 
as color and exact shape. The retinotopic brain structure 
corresponds to a depictive structure in the computer (a 
bitmap image), where empty space is represented 

Figure 1. The SVS system 
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explicitly. The Spatial Scene is three-dimensional, and 
could be inferred from any modality, but we assume that it 
is inferred from the Visual Buffer during perception. In 
virtual environments, it is possible to connect the Spatial 
Scene directly to the environment, as those environments 
typically use spatial encodings natively. SVS also includes 
a perceptual LTM, for both spatial and visual information. 
All of these memories communicate with Soar via a 
qualitative interface: no low-level spatial or visual 
information is present there, only high-level information 
such as object identities and relationships between objects. 
 The previous systems are subsets of SVS, and we have 
reported several results in studying them. The constrained, 
representation-specific processing in the spatial and visual 
systems provides a functional advantage and is more 
efficient than processing the same information 
symbolically (Lathrop, 2008). The use of imagery can 
allow complicated reasoning processes such as path 
planning to be split between abstract symbolic reasoning 
processes and precise spatial processes (Wintermute and 
Laird, 2007), making an overall system that is both general 
across problems and precise within problems. Spatial 
imagery also allows symbolic AI to address problems 
involving fine-grained continuous motion (Wintermute and 
Laird, 2008). A common theme in all of this work is that a 
system with imagery is able to symbolically compose 
hypothetical scenarios, which can then be precisely 
interpreted by using imagery (e.g., “What if I tried to move 
around this obstacle?” “If the enemy was sitting by the hill, 
could my teammate see him?”).  
 For example, an agent operating with a teammate in an 
environment with obstacles and adversaries may use 
imagery to determine if its teammate is in a good position 
to over watch an approaching enemy (Lathrop, 2008). To 
do this, Soar formulates a symbolic description of the 
hypothesized position of the enemy and teammate, which 
is then interpreted by the imagery system. Soar can then 
query the imagery system for qualitative implications of 
the situation, such as “Does the region viewed by my 
teammate intersect  the enemy?”. 

Future Work 
An advantage of examining visuospatial processing from 
an imagery standpoint is that we can make progress 
without having to address every problem typically found in 
vision research. It is much easier to derive a visual 
representation of a known object in a known position than 
it is to identify an unknown object and infer its position. As 
the processes and representations used in mental imagery 
are shared with perception, studying imagery in AI should 
aid the study of computer vision. In particular, creating an 
imagery system requires us to determine what is and is not 
a sufficient system for representing and using visuospatial 
knowledge. We hope that this will further constrain the 
vision problem, aiding research in that area. Similarly, as 
humans are able to solve the same problems our system is 
addressing, exploring the details of what architecture is 

needed to perform this type of non-logical reasoning can 
aid the further development of psychological theories. 
 To further these goals, we are working on extending our 
system towards robotics. We believe that mental imagery 
can provide a key link in robotics systems attempting to 
incorporate a full range of capability, from the 
sensor/effecter level to the cognitive level. Pursuing this 
presents many scientific and engineering challenges. Most 
importantly, methods are needed to translate common 
robotic sensory information into spatial objects or 
references to prototypical objects in LTM, which can then 
be retrieved and used in reasoning. 
 In addition to developing SVS as an AI system, we have 
long-term plans to extend SVS to model the details of 
perceptual attention. This capability should allow SVS to 
serve more directly as a psychological model, since its 
results could be matched against human data. In addition, 
this kind of modeling should force the system to 
encompass a theory of the timing of object recognition, 
which will move it closer to addressing the mechanisms of 
object recognition. 

Conclusion 
We have been working to integrate a naturally-inspired 
component, mental imagery, with an existing AI system, 
Soar. This integration has increased the capabilities of the 
AI system, and has opened up interesting research 
directions in both AI and psychological modeling. 
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